
Journal of Global Optimization 24: 1–33, 2002.
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

1

A Rigorous Global Optimization Algorithm for
Problems with Ordinary Differential Equations

IOANNIS PAPAMICHAIL and CLAIRE S. ADJIMAN
Centre for Process Systems Engineering, Department of Chemical Engineering and Chemical
Technology, Imperial College of Science, Technology and Medicine, London SW7 2BY, UK
(Corresponding author: c.adjiman@ic.ac.uk)

Abstract. The optimization of systems which are described by ordinary differential equations (ODEs)
is often complicated by the presence of nonconvexities. A deterministic spatial branch and bound
global optimization algorithm is presented in this paper for systems with ODEs in the constraints.
Upper bounds for the global optimum are produced using the sequential approach for the solution
of the dynamic optimization problem. The required convex relaxation of the algebraic functions
is carried out using well-known global optimization techniques. A convex relaxation of the time
dependent information is obtained using the concept of differential inequalities in order to construct
bounds on the space of solutions of parameter dependent ODEs as well as on their second-order
sensitivities. This information is then incorporated in the convex lower bounding NLP problem.
The global optimization algorithm is illustrated by applying it to four case studies. These include
parameter estimation problems and simple optimal control problems. The application of different
underestimation schemes and branching strategies is discussed.
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1. Introduction

Many systems can be described by ordinary differential equations
(ODEs). These include, for instance, physical systems (molecular dynamics (Allen
and Tildesley, 1987)), chemical systems (chemical kinetics (Smith, 1981)), eco-
nomic or other dynamic processes (Banks, 1994). The application of dynamic
optimization to such systems allows the determination of their optimal perform-
ance under transient conditions. In most cases, numerous local solutions exist for
problems of this type. Thus, Luus and Cormack (1972) showed that this is true
even for rather simple problems. For a bifunctional catalyst example Luus et al.
(1992) identified 25 local optima using 100 random starting points and Esposito
and Floudas (2000a) identified over 300 local optima using 1000 random starting
points. Due to the presence of nonconvexities, current numerical methods may
fail to identify a solution for a feasible problem. Furthermore, if they succeed in
finding a solution they can only guarantee that it is a local one. There is therefore
a need to develop global optimization algorithms which can address these issues
and guarantee optimal performance. In this section existing approaches to dynamic
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optimization and recent developments in global optimization of dynamic systems
are reviewed briefly.

1.1. DYNAMIC OPTIMIZATION

Several methods can be applied for the numerical solution of the dynamic optim-
ization problem. One class of approaches uses variable discretization in order to
transform the problem to a finite dimensional nonlinear programming (NLP) prob-
lem. The discretization can be applied to the controls (control parameterization) or
to both the state variables and the controls (complete discretization). Due to the
nonconvexity of these formulations, only local solutions can be identified by most
current NLP solvers.

In complete discretization (known as the simultaneous approach) the solution
is carried out in the full space of variables. Tsang et al. (1975) used collocation to
discretize the system. Oh and Luus (1977) proposed the use of orthogonal colloca-
tion (Villadsen and Stewart, 1967), while Biegler (1984) applied global orthogonal
collocation and Lagrange polynomials for the approximation of the continuous
variables. Renfro et al. (1987) divided the time horizon into finite elements and
used global spline collocation on the state variables and piecewise constant ap-
proximation for the controls. Orthogonal collocation was also used by Cuthrell
and Biegler (1987), but this time on finite elements. The stability and the error
properties of implicit Runge-Kutta methods for systems which are described by
differential and algebraic equations (DAEs) were considered by Logsdon and Bie-
gler (1989). They enforced appropriate error constraints in a collocation based NLP
formulation. However, all these methods result in an NLP with a large number of
variables and nonlinear equality constraints.

In control parameterization (known as the sequential approach) only the con-
trols are discretized. The dynamic system is decoupled from the optimization stage
and is integrated using well established techniques in order to evaluate the object-
ive function and the constraints. Various techniques can be used to calculate the
derivatives of the objective function and the constraints. In contrast to complete
discretization, a good approximation of the state variables can be obtained without
affecting the size of the NLP problem. A number of schemes have been proposed
for control parameterization. Pollard and Sargent (1970) used piecewise constant
controls and variable switching times. Sargent and Sullivan (1978) presented a
general formulation for ODEs with constraints. They developed an optimal control
package using piecewise constant controls, variable switching times and adjoint in-
tegration to obtain the gradients with respect to the decision variables. Goh and Teo
(1988) used control parameterization for problems with general constraints obtain-
ing the gradients from the adjoint equations. Vassiliadis et al. (1994a,b) considered
a class of multistage dynamic optimization problems with general constraints. They
applied control parameterization using Lagrange polynomials and variable-length
intervals. Gradients were obtained by the integration of the sensitivity equations.
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Finally, another approach, which uses stochastic features, is dynamic program-
ming. Dynamic programming utilizing grids was used by Luus (1990a,b). It was
also applied to problems with final state constraints using penalty functions by
Luus and Rosen (1991). Luus (1993) extended the originally piecewise constant
control to piecewise linear continuous control policies. Bojkov and Luus (1993)
and Luus and Bojkov (1994) studied the effect of the various parameters used in
iterative dynamic programming. Dadebo and McAuley (1995) used dynamic pro-
gramming and absolute error penalty functions in handling constrained problems.

The reader is referred to Sargent (2000) for a description of other approaches to
dynamic optimization.

1.2. GLOBAL OPTIMIZATION OF DYNAMIC PROBLEMS

The algorithms that have been proposed to date for the solution of a dynamic
problem to global optimality fall into two broad categories, the stochastic and the
deterministic approaches. The general principles of such approaches as applied to
NLPs are reviewed in Boender and Romeijn (1995) for stochastic techniques and
Horst and Tuy (1996) and Floudas (1999) for deterministic techniques.

Several researchers have used stochastic optimization to address dynamic op-
timization problems. Rosen and Luus (1992) applied control parameterization and
used line search to determine initial points for the NLP solver. Banga and Seider
(1996) applied a stochastic algorithm for the optimal control of chemical engineer-
ing systems. Control parameterization with piecewise linear functions and variable-
length intervals was used. The DAE system was integrated for different values of
the parameters chosen using a stochastic procedure and the value of the objective
function was calculated for each feasible set of parameters until convergence was
achieved. Carrasco and Banga (1997) applied this algorithm and a modified version
to the dynamic optimization of chemical batch reactors.

Recently, deterministic algorithms have been considered for dynamic problems.
Smith and Pantelides (1996) applied their symbolic manipulation and spatial BB
algorithm to the solution of a dynamic optimization problem with complete dis-
cretization. Esposito and Floudas (2000b) used the αBB method (Maranas and
Floudas, 1994; Androulakis et al., 1995; Adjiman and Floudas, 1996; Adjiman
et al., 1998a; Adjiman et al., 1998b) for the solution of the NLP problem that
arises from the use of the complete discretization approach for the solution of the
dynamic optimization problem. They found that for systems which are nonlinear in
the state variables this approach performs poorly, sometimes even failing to achieve
convergence. The αBB method was also used for the solution of the NLP problem
that arises from the use of the control parameterization (Esposito and Floudas,
2000a–c). A theoretical guarantee of attaining the global solution of the problem is
offered as long as rigorous values for the parameters needed or rigorous bounds on
these parameters are obtained. Several methods were proposed to calculate these
parameters and good results were produced. However, the issue of the theoretical



4 I. PAPAMICHAIL AND C.S. ADJIMAN

guarantee of global optimality remains open and will be discussed in more detail
in Section 4.

1.3. OUTLINE

The approach used in the present work is based on existing deterministic global
optimization BB techniques for NLP problems. A new convex underestimating
procedure is developed for systems that can be described by ODEs.

Section 2 gives the mathematical statement of the dynamic optimization prob-
lem and describes the sequential approach used for its solution. Section 3 presents
differential inequalities and their application to the overestimation of the solution
space of parameter dependent ODEs. This is used to develop a convex relaxation
strategy which is incorporated within a global optimization algorithm as described
in Section 4. An implementation of the algorithm and four case studies are dis-
cussed in Section 5. The case studies include two parameter estimation problems
in chemical kinetics modeling and two optimal control problems.

2. Dynamic optimization

The formulation of the dynamic optimization problem studied is given by:

min
p
J (x(ti , p), p ; i = 0, 1, . . . , NS)

s.t.
ẋ = f (t, x, p) ∀t ∈ [t0, tNS]
x(t0, p) = x0(p)

gi(x(ti , p), p) � 0 , i = 0, 1, . . . , NS
pL � p � pU

(1)

where t ∈ � is time, t0 and tNS are the initial and final time, respectively, ti ∈
[t0, tNS ], x and ẋ ∈ �n are the state variables and their time derivatives, respect-
ively, and p ∈ �r are the time-invariant parameters. The functions J , f , x0 and
gi, i = 0, 1, . . . , NS, are such that J : �n·(NS+1)× �r → �, f : [t0, tNS] × �n×
�r → �n, x0 : �r → �n and gi : �n × �r → �si .

Systems with time dependent controls can be transformed to this form using
control parameterization (Vassiliadis et al., 1994a).

REMARK 2.1. The following assumptions are made:
• J (x(ti , p), p ; i = 0, 1, . . . , NS) is twice continuously differentiable with

respect to x(ti , p), i = 0, 1, . . . , NS and p on �n·(NS+1) × �r .
• Each element of gi(x(ti , p), p) is twice continuously differentiable with re-

spect to x(ti , p) and p, i = 0, 1, . . . , NS on �n × �r .
• Each element of f (t, x, p) is twice continuously differentiable with respect to

the states x and the parameters p on [t0, tNS ] × �n × �r .
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• Each element of x0(p) is twice continuously differentiable with respect to the
parameters p on �r .

The sequential approach is used for the solution of this NLP problem and provides
an upper bound for the global optimum solution. Given values for the parameters,
p, the system can be integrated from t0 to tNS . After reaching tNS , the objective
function and the constraints can be evaluated. The evaluation of their gradients re-
quires the solution of the sensitivity equations, which are derived by differentiating
the differential equations with respect to the parameters, p:

ẋp(t, p) = ∂f
∂x
xp(t, p)+ ∂f

∂p
∀t ∈ [t0, tNS ] (2)

where:

xp(t, p) = ∂x
∂p

(3)

and

ẋp(t, p) = ∂

∂t

(
∂x

∂p

)
. (4)

The initial condition for the sensitivity equations is found by differentiating the
initial condition of the original system with respect to the parameters, p:

xp(t0, p) = ∂x0

∂p
. (5)

Some theorems on continuity and differentiability of the solution of ODE sys-
tems are presented in Appendix A.

In the context of global optimization, second-order information can play a sig-
nificant role. The following remarks, to be used in the development of convex
relaxations, show that this information exists and that it can be derived in a manner
analogous to first-order information.

REMARK 2.2. Based on Remark 2.1 and Appendix A the solution x(ti , p) of the
ODE system using the initial condition specified is twice continuously differenti-
able with respect to the parameters p on �r.

REMARK 2.3. If the system of first-order sensitivity equations (2) and (5) is
differentiated once again with respect to the parameters, p, then the second-order
sensitivity equations are produced.

3. Differential inequalities

The dependence of convex relaxations on variable bounds is a common feature
of deterministic global optimization algorithms. Since the state variables appear
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Figure 1. Trajectories of the state variable for different values of v.

in the nonconvex objective function and constraints, a method for the derivation
of rigorous bounds on these variables at time ti , i = 0, 1, . . . , NS, is needed.
This issue can be resolved by generating an overestimation of the solution space of
ODEs.

The following ODE is considered as an example:

ẋ(t) = −x(t)2 + v , ∀t ∈ [0, 1] (6)

x(0) = 9 (7)

If the parameter v can take values in the following interval:

−5 � v � 5, (8)

then the right hand side of ODE (6)–(7) represents a set of functions rather than
a single function. Solutions of this ODE for different values of v are shown in
Figure 1.

It can be observed that the solutions for the upper bound and the lower bound of
v give bounds on the trajectories. The aim of this section is to propose a systematic
approach for the derivation of such bounds, applicable to general ODEs.

Validated (or interval) methods produce an enclosure of the solution of an ODE
system. Surveys of interval methods can be found in Moore (1984), Nickel (1986)
and Corliss (1995). Differential inequalities (Lakshmikantham and Leela, 1969;
Walter, 1970) can be used to construct sub- and superfunctions. Nickel (1978,
1983) and Adams (1980) characterized systems of ODEs for which the theory of
differential inequalities can be used to compute inclusions which are as tight as
possible. Finite difference approximations combined with interval calculations can
also be applied to produce interval solutions. Moore, (1966, 1979) applied them
so as to overestimate the remainder term of a Taylor series expansions. Differenti-
ation arithmetic was used to generate all the series terms. Nedialkov et al. (1999),
provided a common framework for the Taylor series methods. They compared
different schemes (Moore, 1966, 1978; Krückeberg, 1969; Lohner, 1987; Rihm,
1994) and identified their difficulties.
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Neumaier (1994) used logarithmic norms and differential inequalities for the
enclosure of solutions to initial value problems for ODEs. Recently, Berz et al.
(2001) used high-order Taylor polynomials with remainder bound for the verified
integration of ODEs.

The next subsection presents the basic definitions and theorems on how to
identify bounding trajectories for the solutions of ODEs, using differential inequal-
ities. The extension of these theorems to parameter dependent ODEs is discussed
in Section 3.2.

3.1. BOUNDING THE SOLUTIONS OF ODES

The following ODE is studied:

ẋ(t) = f (t, x(t)), ∀t ∈ (0, T ] (9)

x(0) = x0 (10)

where x(t) and ẋ(t) ∈ �n and f : (0, T ] × �n → �n. The next theorems deal
with lower bounds (subfunctions) x(t) and upper bounds (superfunctions) x(t) for
the solution of this ODE, x(t).

DEFINITION 3.1. Let 0 < T ∈ �, I = [0, T ], I0 = (0, T ] and the class X be
defined as the set of all functions x : I → �n, continuous on I and differentiable
on I0. Let also x = (x1, x2, . . . , xn)

T and xk− = (x1, x2, . . . , xk−1, xk+1, . . . , xn)
T .

The notation f (t, x) = f (t, xk, xk−) is used.

THEOREM 3.1 (12.IVa Walter (1970)). Let f be continuous and satisfy a unique-
ness condition on I0 × �n. If x(t), x(t) ∈ X satisfy the following inequalities:

x(0) � x0 � x(0)
ẋk(t) � fk(t, xk(t), [xk−(t), xk−(t)])
ẋk(t) � fk(t, xk(t), [xk−(t), xk−(t)])

∀t ∈ I0 and k = 1, 2, . . . , n

then x(t) is a subfunction and x(t) is a superfunction for the solution of ODE
(9∼10) x(t), i.e.,

x(t) � x(t) � x(t) , ∀t ∈ I,

where the inequalities are understood component-wise.

DEFINITION 3.2 Let g(x) be a mapping g : D → � with D ⊆ �n. Again
the notation g(x) = g(xk, xk−) is used. The function g is called unconditionally
partially isotone (antitone) on D with respect to the variable xk if

g(xk, xk−) � g(x̃k, xk−) for xk � x̃k (xk � x̃k)

and for all (xk, xk−), (x̃k, xk−) ∈ D.
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DEFINITION 3.3 Let f (t, x) = (f1(t, x), . . . , f2(t, x))
T and each element

fk(t, xk, xk−) be unconditionally partially isotone on I0 × � × �n−1 with respect
to any component of xk− , but not necessarily with respect to xk. Then f is quasi-
monotone increasing on I0 × �n with respect to x. (This name is due to Walter
(1970).)

It is interesting to notice that if n = 1, then any function f (t, x) is quasi-
monotone increasing.

THEOREM 3.2 (12.VIa Walter (1970)). Let f be continuous, satisfy a uniqueness
condition on I0 × �n and be quasi-monotone increasing on I0 × �n with respect
to x. Further suppose x(t), x(t) ∈ X . Then x(t) is a subfunction for the solution
of ODE (9∼10) x(t), i.e.,

x(t) � x(t) , ∀t ∈ I

if

x(0) � x0

ẋk(t) � fk(t, x(t)) , ∀t ∈ I0 and k = 1, 2, . . . , n

and x(t) is a superfunction, i.e.,

x(t) � x(t) , ∀t ∈ I

if

x(0) � x0

ẋk(t) � fk(t, x(t)) , ∀t ∈ I0 and k = 1, 2, . . . , n

3.2. BOUNDING THE SOLUTIONS OF PARAMETER DEPENDENT ODES

In order to address problems of type (1), ODE (9∼10) must be replaced by:

ẋ(t) = f (t, x(t), p), ∀t ∈ (0, T ] (11)

x(0) = x0(p) (12)

where f is a function of parameters, p ∈ [pL, pU ] ⊂ �r , and can be considered
as a set of functions {f (t, x(t), p)}. The same is true for the initial value x0 which
is usually a function of p and is considered as a set {x0(p)}. Let {x} be the set of
solutions of (11)–(12). Again lower and upper bounds must be determined such
that x(t) � x(t, p) � x(t) , ∀p ∈ [pL, pU ] , ∀t ∈ I . This can be written as
{x} ⊆ [x, x].
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DEFINITION 3.4. If [x, x] is the interval hull of {x}, which means that x = inf{x}
and x = sup{x}, then the bounds are called optimal. If x, x ∈ {x} ⊆ [x, x] then this
implies that [x, x] is the interval hull of {x} and so again the bounds are optimal.
(Nickel, 1983)

THEOREM 3.3. Let f be continuous and satisfy a uniqueness condition on I0 ×
�n × [pL, pU ]. If x(t), x(t) ∈ X satisfy the following inequalities:

x(0) � x0([pL, pU ]) � x(0)
ẋk(t) � fk(t, xk(t), [xk−(t), xk−(t)], [pL, pU ])
ẋk(t) � fk(t, xk(t), [xk−(t), xk−(t)], [pL, pU ])

∀t ∈ I0 and k = 1, 2, . . . , n

then x(t) is a subfunction and x(t) is a superfunction for the set {x} of solutions of
ODE (11∼12), i.e.,

x(t) � x(t, p) � x(t) , ∀p ∈ [pL, pU ] , ∀t ∈ I.

Proof. The proof is presented in Appendix B.

REMARK 3.1. If f is continuous and satisfies a uniqueness condition on I0 ×
�n×[pL, pU ] then the solution of the following ODE system satisfies Theorem 3.3:

ẋk(t) = inf fk(t, xk(t), [xk−(t), xk−(t)], [pL, pU ])
ẋk(t) = sup fk(t, xk(t), [xk−(t), xk−(t)], [pL, pU ]) (13)

∀t ∈ I0 and k = 1, 2, . . . , n

x(0) = inf x0([pL, pU ])
x(0) = sup x0([pL, pU ]) (14)

System (13)–(14) provides a practical procedure to construct bounding trajectories
for any ODE system which satisfies the appropriate continuity and uniqueness con-
ditions. Natural interval extensions are used as inclusion functions due to their ease
of implementation and directed outward rounding is applied to the calculations in
the system (13)–(14) .

REMARK 3.2. For the case of functions f (t, x, p) that are quasi-monotone in-
creasing on I0 × �n × [pL, pU ] with respect to x the ODE system (13)–(14)
is decoupled. If that is not the case, then the so-called wrapping effect (the phe-
nomenon that appears when a set, which is not representable exactly by an interval
vector, has to be enclosed in an interval vector) produces poor enclosures. Moore
(1966) noticed that effect and proposed a coordinate transformation. Stewart (1971)
applied a heuristic to reduce the tendency of the widths of the inclusion to grow
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more rapidly than widths of the optimal inclusion. Jackson (1975) gave a definition
of wrapping and identified classes of problems on which Moore’s and Krückeberg’s
algorithms compute good bounds. Nickel (1985) examined the wrapping effect and
identified systems where it can be eliminated. Parallelotope enclosures (Lohner,
1987), ellipsoids (Neumaier, 1993) and high order zonotope enclosures (Kühn,
1998) have been used for the reduction of the wrapping effect.

REMARK 3.3. If the functions on the right-hand side of system (13) belong to
the space of functions represented by system (11) and the initial conditions (14)
belong to the space of initial conditions represented by (12), then the solutions of
system (13)–(14), x and x, are also solutions of system (11)–(12). This means that
if the following are true:

inf fk(t, xk(t), [xk−(t), xk−(t)], [pL, pU ]) ∈ {fk(t, x(t), p)}
sup fk(t, xk(t), [xk−(t), xk−(t)], [pL, pU ]) ∈ {fk(t, x(t), p)}
inf x0([pL, pU ]) ∈ {x0(p)}
sup x0([pL, pU ]) ∈ {x0(p)}

then x, x ∈ {x} ⊆ [x, x] and so the inclusion is optimal.

3.3. EXAMPLE

The example discussed at the beginning of this section is reconsidered here. The
function, f (t, x(t), v) = −x(t)2 + v, on the right-hand side of ODE (6)–(7) is
quasi-monotone increasing on [0, 1] × � × [−5, 5] with respect to x and, based on
Remark 3.2, the bounding system is decoupled. The subfunction is given by:

ẋ(t) = −x(t)2 − 5 , ∀t ∈ [0, 1] (15)

x(0) = 9 (16)

and the superfunction is given by:

ẋ(t) = −x(t)2 + 5 , ∀t ∈ [0, 1] (17)

x(0) = 9 (18)

The functions on the right-hand side of these ODEs belong to the space of functions
of the original ODE and, based on Remark 3.3, the interval bounds are optimal.
The solutions of these bounding ODEs are shown in Figure 2. They enclose all the
solutions of the original parameter dependent ODE.

4. Global optimization algorithm

A deterministic spatial BB global optimization algorithm for problems with ODEs
in the constraints is presented. The convex relaxed problem is first formulated
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Figure 2. Bounds on the state variable as a function of time.

based on well-known techniques and the ideas introduced in Section 3. Each step
of the algorithm is then presented.

4.1. FORMULATION OF THE CONVEX RELAXATION

The dynamic optimization problem has been formulated as an NLP in Section 2.
Its solution gives an upper bound for the global optimization problem. A convex
relaxation is now needed to underestimate the global optimum. A reformulation of
the NLP problem (1) is given by:

min
x̂,p

J (x̂, p)

s.t.
gi(x̂i, p) � 0 , i = 0, 1, . . . , NS
x̂i = x(ti , p) , i = 0, 1, . . . , NS
p ∈ [pL, pU ]

(19)

where the values of x(ti , p), i = 0, 1, . . . , NS are obtained by solving the ODE
system:

ẋ(t, p) = f (t, x(t, p), p) ∀t ∈ [t0, tNS ] (20)

x(t0, p) = x0(p) (21)

4.1.1. Bounds on x̂i

As previously noted, it is essential to have bounds on all the variables participating
in a nonconvex manner. In problem (19), bounds for p are user-specified. The
bounds on x̂i depend on the parameters bounds and must be derived automatically.

Based on Remark 3.1 bounds can be constructed for the solutions of ODE sys-
tem (20)–(21). These bounds are also valid for the variable vectors x̂i that have
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been introduced in the reformulated NLP problem:

x(ti) � x̂i � x(ti) , i = 0, 1, . . . , NS. (22)

4.1.2. Convex relaxation of J and gi

It is assumed that the functions J and gij , i = 0, 1, . . . , NS, j = 1, 2, . . . , si
can be decomposed into a sum of terms, where each term may be classified as
convex, bilinear, univariate concave or general nonconvex twice continuously dif-
ferentiable. Convex terms do not require any transformation. Bilinear terms can
be underestimated using the convex envelope proposed by McCormick (1976).
Each bilinear term is replaced by a new variable and linear constraints are inser-
ted for this variable. Univariate concave terms can be underestimated using the
secant underestimator. For a general nonconvex twice continuously differentiable
term fNT (z) the α-based underestimator (Maranas and Floudas, 1994; Androulakis
et al., 1995) can be used over the domain [zL, zU ] ⊂ �m. The addition of a neg-
ative separable convex quadratic term overpowers the nonconvexity of the original
function:

fNT (z)+
m∑
i=1

αi(z
L
i − zi)(zUi − zi) (23)

where the values for the non-negative αi parameters are calculated using the scaled
Gerschgorin method proposed by Adjiman et al. (1998b). This method requires
the use of a symmetric interval matrix [HfNT ] = ([hij , hij ]) such that [HfNT ] �
HfNT (z) = ∇2fNT (z) , ∀z ∈ [zL, zU ]. αi can be calculated by the following
formula:

αi = max


0,−1

2


hii −

∑
j �=i

|h|ij




 (24)

where |h|ij = max{|hij |, |hij |}. These values for the αi parameters guarantee the
convexity of the underestimator. The interval matrix [HfNT ] is calculated by apply-
ing natural interval extensions to the analytical expression for each second-order
derivative of fNT and is given by [HfNT ] = HfNT ([zL, zU ]).

An overall convex underestimator is given by the summation of the convex
underestimators for each term in the function and the introduction of additional
constraints required for the bilinear terms.

4.1.3. Convex relaxation of the set of equality constraints

The set of equalities can be written as two sets of inequalities:

x̂i − x(ti , p) � 0 , i = 0, 1, . . . , NS (25)

x(ti , p)− x̂i � 0 , i = 0, 1, . . . , NS (26)
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Their relaxation is given by:

x̂i + x̆−(ti, p) � 0 , i = 0, 1, . . . , NS (27)

x̆(ti , p)− x̂i � 0 , i = 0, 1, . . . , NS (28)

where the ˘ superscript denotes the convex underestimator of the specified function
and x−(ti, p) = −x(ti , p). The function x̆(ti, p) is a convex underestimator of
x(ti , p) and the function −x̆−(ti , p) is a concave overestimator of x(ti , p). Two
strategies have been developed to derive these over and underestimators.

4.1.3.1. Constant bounds The constant bounds given by inequalities (22) are
valid convex underestimators and concave overestimators for x(ti , p). This means
that inequalities (27)–(28) can be replaced by inequalities (22). These bounds do
not depend on the parameters p themselves, but do depend on the bounds on p.

4.1.3.2. α-based bounds An alternative way to generate the underestimators
needed has been proposed by Esposito and Floudas (2000a–c). Based on Remark
2.2, x(ti , p) is a twice continuously differentiable function of the parameters p
on �r . This means that the α-based underestimators can be used for the convex
underestimation of x(ti , p) and x−(ti , p) over the domain [pL, pU ] ⊂ �r :

x̆k(ti, p) = xk(ti , p)+
r∑
j=1

α+
kij (p

L
j − pj)(pUj − pj)

i = 0, 1, . . . , NS , k = 1, 2, . . . , n (29)

x̆−
k (ti, p) = x−

k (ti, p)+
r∑
j=1

α−
kij (p

L
j − pj)(pUj − pj)

i = 0, 1, . . . , NS , k = 1, 2, . . . , n (30)

The difficulty in this approach is the calculation of the non-negative α+
kij and α−

kij

parameters. There is no functional form available for the Hessian matrices in order
to use interval calculations directly, as was done in Section 4.1.2. This hinders the
calculation of the required interval matrices [Hxk(ti)] � Hxk(ti)(p) = ∇2xk(ti , p),
∀p ∈ [pL, pU ] and [Hx−

k (ti )
] = −[Hxk(ti )].

Esposito and Floudas (2000a–c) proposed three methods based on sampling.
Using this local information, the authors show that the ability of the algorithm to
identify the global solution depends on the value of the parameters, which must
be large enough for the lower bounding problem to have a unique solution. As a
result, they find that the number of sample points used affects the convexity of the
underestimator. Thus, the method using interval calculations produces an interval
matrix, [H ∗], that may be an underestimation of the space of the Hessian matrices.
This means that there may exist p ∈ [pL, pU ] : ∇2xk(ti , p) = Hxk(ti )(p) �∈ [H ∗].

A rigorous procedure is proposed in the present work for the calculation of the
α+
kij and α−

kij parameters. The scaled Gerschgorin method put forward by Adjiman
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Figure 3. Over and underestimators for the solution of example (6)–(7) at time t = 1. The
solution of the ODE, x(1, v), ( ), which is also the α-based overestimator, the constant
bounds (- - -) and the α-based underestimator (· · · ) are shown.

et al. (1998b) and formulas similar to Eq. (24) can be utilized again. The difficulties
associated with the computation of valid Hessian matrices are resolved by con-
structing bounds based on Remark 3.1 for the ODE system that is generated when
the first and the second-order sensitivity equations are coupled with the original
ODE system (20)–(21). These bounds on the second-order derivatives can then be
used to construct each element of the interval Hessian matrices needed.

4.1.3.3. Comparison of the two strategies The solution, x(1, v), of example (6)–
(7) at time t = 1 is a concave function of the parameter v, as shown in Figure 3a.
The methods proposed in Sections 4.1.3.1 and 4.1.3.2 can be applied to construct
a valid convex relaxation. The constant bounds for the whole range of parameters
are given by the dashed lines. The application of the α-based underestimator gives
the dotted line. An exact α-based overestimator is produced because the analysis
of [Hx−(1,v)] reveals that the function is concave and α− is set to zero. However, the
α-based underestimator (α+ = 0.5212) is worse than the constant lower bound for
most of the range of v. In Figure 3b the domain of v is divided into two subdomains
and both strategies are again applied. For the subdomain [0, 5] the α-based under-
estimator (α+ = 0.0303) is tighter than the constant bound for the whole range
of the variable. This is often the case for small ranges. For the subdomain [−5, 0]
the value for the α+ parameter is α+ = 0.5212. It is thus not possible to identify a
strategy which is inherently tighter than the other.

The derivation of the α-based underestimators requires bounds on the second-
order sensitivities. To obtain these, bounds on the original system (the constant
bounds) and on the first-order sensitivities must also be calculated. Since the con-
stant bounds are generated at no extra cost when α-based underestimators are used,
the relaxation strategies used in practice always involve the constant bounds, with
or without the α-based bounds.
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4.1.4. Convex relaxation of the NLP

After relaxing (underestimating) the objective function and relaxing (overestimat-
ing) the feasible region, the convex relaxation of the NLP (19) is given by:

min
x̂,p,w

J̆ (x̂, p,w)

s.t.
ği(x̂i , p,w) � 0 , i = 0, 1, . . . , NS
x(ti) � x̂i � x(ti) , i = 0, 1, . . . , NS
C(x̂, p,w) � 0
p ∈ [pL, pU ]

(31)

where the ˘ superscript denotes the convex underestimator of the specified func-
tion, C denotes the set of additional constraints arising from the convex relaxation
of bilinear terms and w denotes the vector of new variables introduced by this
relaxation. If the α-based method is also used for the convex relaxation of the set
of equality constraints then the following constraints can be added to the above
formulation:

x̂i + x̆−(ti, p) � 0 , i = 0, 1, . . . , NS

x̆(ti , p)− x̂i � 0 , i = 0, 1, . . . , NS
(32)

4.2. SPATIAL BB ALGORITHM

After constructing the convex relaxation of the original NLP problem, a spatial
BB algorithm (Horst and Tuy, 1996) can be used in order to obtain the global
minimum within an optimality margin, ε. This algorithm is described in the present
subsection. Some steps are then analyzed further.

4.2.1. Structure of BB algorithm

Given a relative optimality margin, εr , and a maximum number of iterations,
MaxI ter:
Step 1. Initialization

Set the upper bound on the objective function: J u := +∞.
Initialize the iteration counter: I ter := 0.
Initialize a list of subregions L to an empty list: L := ∅.
Initialize a region R to the region covering the full domain of variables
p: R := [pL, pU ].

Step 2. Upper bound
Solve the original NLP with bounds on p given by R.
If a feasible solution pR is obtained with objective function J uR, then set
the best feasible solution p∗ := pR and J u := J uR.
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Step 3. Lower bound
Obtain bounds on the differential variables.
If the α-based relaxation is additionally used for the overestimation of the
equality constraints then obtain bounds on the second-order sensitivities.
Form the relaxed problem for R and solve it.
If a feasible solution p∗

R is obtained for R with objective function J %R,
then add R to the list L together with J %R and p∗

R.
Step 4. Subregion selection

If the list is empty, then the problem is infeasible. Terminate.
Otherwise set the region R to the region from the list L with the lowest
lower bound: R := arg min

Li∈L
J %Li .

Remove R from the list L.
Step 5. Checking for convergence

If (J u − J %R)/|J %R| � εr , then the solution is p∗ with an objective function
J u. Terminate.
If I ter = MaxI ter, then terminate and report (J u − J %R)/|J %R|.
Otherwise increase the iteration counter by one: I ter := I ter + 1.

Step 6. Branching within R
Apply a branching rule on subregion R to choose a variable on which to
branch and generate two new subregions, R1,R2 which are a partition of
R.

Step 7. Upper bound for each region
For i = 1, 2, solve the original NLP with bounds on p given by Ri .
If a feasible solution pRi is obtained with objective function J uRi < J

u,
then update the best feasible solution found so far p∗ := pRi , set J u :=
J uRi and remove from the list L all subregions R′ such that J %R′ > Ju.

Step 8. Lower bound for each region
Obtain bounds on the differential variables.
If the α-based relaxation is additionally used for the overestimation of the
equality constraints then obtain bounds on the second-order sensitivities.
Form the relaxed problem for each subregion R1,R2 and solve it.
For i = 1, 2, if a feasible solution p∗

Ri is obtained for Ri with objective
function J %Ri then:

• If J %Ri < J
%
R, then set J %Ri := J %R.

• If J %Ri � J u, then add Ri to the list L together with J %Ri and p∗
Ri .

Go to step 4.

4.2.2. Step 6: Branching

In this step the subregion R is partitioned into two new subregions, R1,R2. The
variable on which to branch is selected via one of the following strategies:
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4.2.2.1. Strategy 1 The well-known least reduced axis rule is applied (e.g., Adji-
man et al., 1998a). The ratio of the current range to the initial range is calculated
for each variable. The variable with the largest ratio is selected for branching. In
the case of more than one equal maxima, the variable with the smallest index is
selected.

4.2.2.2. Strategy 2 The overall influence of each variable on the tightness of the
convex underestimating problem is considered. This overall contribution is made
up of two components:

µj,R = µj,Ralg + µj,Rdyn
where µj,Ralg is the contribution of the variable pj calculated from the algebraic part
of the formulation (i.e., the objective function and the inequality constraints) and
µ
j,R
dyn is the contribution of the variable pj calculated from the dynamic part of the

formulation (i.e., the equality constraints).
The measure for the variable pj from the algebraic part is a summation of the

contributions of all the terms in which variable pj participates. The separation
distance between each term and its underestimator is first calculated at the optimum
solution of the lower bounding problem on R (Adjiman et al., 1998a).

The measure for the variable pj from the dynamic part is given by (Esposito
and Floudas, 2000b):

µ
j,R
dyn = −

n∑
k=1

NS∑
i=0

α+
kij (p

L
j,R − p∗

j )(p
U
j,R − p∗

j )

−
n∑
k=1

NS∑
i=0

α−
kij (p

L
j,R − p∗

j )(p
U
j,R − p∗

j )

where the ∗ superscript denotes the value of the variable at the solution of the lower
bounding problem on R.

The variable with the largest µj,R is selected for branching. In the case of more
than one equal maxima, the variable with the smallest index is selected.

4.2.3. Step 7: Upper bound calculation

To reduce the computational expense arising from the repeated solution of local
dynamic optimization problems, the upper bound generation does not have to be
applied at every iteration of the algorithm. This does not affect the ability of the
algorithm to identify the global solution.
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4.2.4. Step 8: Lower bound calculation

If the relaxed problem is feasible then it has to be as tight as the relaxation at its
parent node to ensure that the bounding operation is improving (Horst and Tuy,
1996). This is enforced by applying the following test: If J %Ri < J

%
R, then set

J %Ri := J %R.

5. Implementation and case studies

The global optimization algorithm presented in the previous section was imple-
mented using MATLAB 5.3 (The MathWorks, Inc., 1999).

The upper and lower bound generation steps require the solution of NLP prob-
lems. The function fmincon was used, which is an implementation of a general
NLP solver provided by the Optimization Toolbox 2.0 (Coleman et al., 1999) for
MATLAB. This solver uses either a subspace trust region method based on the
interior-reflective Newton method, or a sequential quadratic programming method.

The solution of the upper and lower bounding problems also requires the integ-
ration of the ODE system. The sensitivity equations are integrated together with
the original ODE. In order to formulate the lower bounding problem the equality
constraints can be overestimated using the constant bounds given by inequalit-
ies (22). Additionally the α-based underestimators given by Eqs. (29) and (30)
can be used. The integration of another ODE, generated based on Remark 3.1, is
needed for the production of these bounds on the state variables and their second-
order sensitivities. The MATLAB function ode45 (Shampine and Reichelt, 1997)
was used in all cases. It is an implementation of a Runge-Kutta method based
on the Dormand-Prince pair. The interval calculations needed at each function
evaluation of the latter ODE system were implemented explicitly where possible.
Otherwise, an interval arithmetic package for MATLAB, called INTLAB (Rump,
1999a,b), was used. It is worth noting that this prototype implementation is not
optimized. CPU times are therefore reported only for the purpose of comparing
different bounding and branching strategies within the present implementation.

In the next subsections four examples are studied. The first one is a simple
optimal control problem. The next two are parameter estimation problems in chem-
ical kinetics modeling. The last example is a well-known optimal control prob-
lem. All the case studies were solved on an Ultra-60 workstation (2 × 360 MHz
UltraSPARC-II CPU, 512MB RAM).

5.1. CASE STUDY 1: A SIMPLE OPTIMAL CONTROL PROBLEM

This example is an optimal control problem with one constant control. The differ-
ential system (6)–(8) considered in Section 3 is included in the constraints. This
problem has at least two local minima. Its formulation is given by:
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Table 1. Case study 1: Global optimization results

Underestimation scheme Branching strategy εr Iter. CPU time (s)

Constant 1 1.00e-07 2 7
Constant and α-based 1 1.00e-07 1 25

min
v

− x(1)2
s.t. ẋ(t) = −x(t)2 + v ∀t ∈ [0, 1]

x(0) = 9
− 5 � v � 5

(33)

The procedure followed to form the lower bounding problem is presented analyt-
ically in Appendix C. The global optimum parameter is v = −5 and the value of
the objective function for the global optimum parameter is equal to -8.23262. The
results are presented in Table 1. The upper bound calculation was performed only
once. Since there is only one parameter in this problem, it is selected for branching
at every iteration.

When both the constant and the α-based underestimation schemes are used,
although the number of iterations is halved, the CPU time is much larger because
of the time spent on the integration of the ODE that produces the bounds on the
state variables and their second-order sensitivities.

5.2. CASE STUDY 2: A FIRST-ORDER IRREVERSIBLE LIQUID-PHASE

REACTION

The second example is a parameter estimation problem with two parameters and
two differential equations in the constraints. It appears in Tjoa and Biegler (1991)
as well as in Floudas et al. (1999) and Esposito and Floudas (2000b). It involves a
first-order irreversible isothermal liquid-phase chain reaction:

A
k1−→ B

k2−→ C

The problem can be formulated as follows:

min
k1,k2

10∑
j=1

2∑
i=1

(xi(tj )− xexpi (tj ))2

s.t. ẋ1(t) = −k1x1(t) ∀t ∈ [0, 1]
ẋ2(t) = k1x1(t)− k2x2(t)

x1(0) = 1
x2(0) = 0
0 � k1 � 10
0 � k2 � 10

(34)



20 I. PAPAMICHAIL AND C.S. ADJIMAN

Table 2. Case study 2: Global optimization results

Underestimation scheme Branching strategy εr Iter. CPU time (s)

Constant 1 1.00e-02 3,501 2,828

Constant 1 1.00e-03 34,508 22,959

Constant and α-based 1 1.00e-02 31 396

Constant and α-based 1 1.00e-03 35 420

Constant and α-based 2 1.00e-02 27 366

Constant and α-based 2 1.00e-03 31 407

where x1 and x2 are the mole fractions of components A and B, respectively. k1 and
k2 are the rate constants of the first and second reaction, respectively. xexpi (tj ) is the
experimental point for the state variable i at time tj . The points used in the present
work are taken from Floudas et al. (1999).

The global optimum parameters are k1 = 5.0035 and k2 = 1.0000 and the
value of the objective function for the global optimum parameters is equal to
1.18562e-06. The results are presented in Table 2. The upper bound calculation
was performed once every 100 iterations.

While using only the constant bounds for the overestimation of the equality
constraints, the second branching strategy cannot be applied because the lower
bounding problem does not depend on the parameter. When the α-based under-
estimation scheme is used additionally to the constant bounds, the number of it-
erations needed is decreased by several orders of magnitude. For the same type
of underestimation and for both branching strategies only four iterations more are
needed if the optimality margin, εr , is decreased from 1.00e-02 to 1.00e-03. Both
optimality margins require four iterations less when branching strategy 2 is used
instead of branching strategy 1.

It can be easily shown from the analytical solution of the first equation of the
ODE system that the function x1(t) does not depend on k2 and that it is a convex
function of k1. The use of second-order information identifies this fact automatic-
ally and sets the values of all the elements of the vectors α+

1·2, α−
1·2 and α+

1·1 to zero.
The values of the elements of the vector α−

1·1 at the root node of the BB tree range
from 0.005 to 0.5. When branching strategy 2 is used, they range from 0.003 to
0.01 after five iterations (level 5). The range is the same for all the levels of the BB
tree greater than 5. At the root node the values of all the other parameters α+

2·· and
α−

2·· range from 0.002 to 2.5. When branching strategy 2 is used, they range from
0 to 0.8 after five iterations (level 5). The maximum value decreases to 0.15 as
branching occurs. The magnitude of the values is small and is reduced from level
to level, quickly driving the system to convergence.
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5.3. CASE STUDY 3: CATALYTIC CRACKING OF GAS OIL

This example is a parameter estimation problem with three parameters and two
differential equations in the constraints. It appears in Tjoa and Biegler (1991) as
well as in Floudas et al. (1999) and Esposito and Floudas (2000b). It involves
an overall reaction of catalytic cracking of gas oil (A) to gasoline (Q) and other
products (S):

A
k1−→ Q

k3 ↘ ↙ k2

S

The problem can be formulated as follows:

min
k1,k2,k3

20∑
j=1

2∑
i=1

(xi(tj )− xexp
i (tj ))

2

s.t. ẋ1(t) = −(k1 + k3)x1(t)
2 ∀t ∈ [0, 0.95]

ẋ2(t) = k1x1(t)
2 − k2x2(t)

x1(0) = 1 (35)

x2(0) = 0

0 � k1 � 20

0 � k2 � 20

0 � k3 � 20

where x1 and x2 are the mole fractions of components A andQ, respectively. k1, k2

and k3 are the rate constants of the respective reactions. xexp
i (tj ) is the experimental

point for the state variable i at time tj . The points used in the present work are again
taken from Floudas et al. (1999).

The global optimum parameters are k1 = 12.2141, k2 = 7.9799 and k3 =
2.2215 and the value of the objective function for the global optimum parameters
is equal to 2.65567e-03. The results are presented in Table 3. The upper bound
calculation was performed once every 100 iterations.

While using only the constant bounds, a maximum number of iterations was
set. This number was reached and the algorithm was terminated. The relative op-
timality obtained is reported. When the α-based underestimation scheme is used
additionally to the constant bounds, the number of iterations needed for even smal-
ler optimality margins is decreased by several orders of magnitude. Again, less
iterations are needed when branching strategy 2 is applied.
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Table 3. Case study 3: Global optimization results

Underestimation scheme Branching strategy εr Iter. CPU time (s)

Constant 1 6.41e-02 10,000 16,729

Constant 1 1.33e-02 100,000 152,816

Constant and α-based 1 1.00e-02 73 11,415

Constant and α-based 1 1.00e-03 88 13,524

Constant and α-based 2 1.00e-02 65 10,116

Constant and α-based 2 1.00e-03 81 12,300

5.4. CASE STUDY 4: OPTIMAL CONTROL WITH AN END-POINT CONSTRAINT

This example is an optimal control problem with one control, two differential equa-
tions and one end-point constraint. It appears in Goh and Teo (1988) as well as in
Dadebo and McAuley (1995). The formulation of the problem is:

min
u(t), ∀t∈[0,1]

x2(1)

s.t. ẋ1(t) = u(t) ∀t ∈ [0, 1]
ẋ2(t) = x1(t)

2 + u(t)2 (36)

x1(0) = 1

x2(0) = 0

x1(1) = 1

Control parameterization is used in order to transform the dynamic optimization
problem from infinite dimensional to a finite optimization problem. One finite
element is used and the control is approximated by a linear function of t . The
problem is then transformed to the following:

min
u1,u2

x2(1)

s.t. ẋ1(t) = u1(1 − t)+ u2t ∀t ∈ [0, 1]
ẋ2(t) = x1(t)

2 + (u1(1 − t)+ u2t)
2

x1(0) = 1 (37)

x2(0) = 0

x1(1) = 1

− 1 � u1 � 1

− 1 � u2 � 1

where bounds are imposed on the parameters.
The global optimum parameters are u1 = −0.4545 and u2 = 0.4545 and

the value of the objective function for the global optimum parameters is equal
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Figure 4. Case study 4: The state variable trajectories for the global optimum parameters.

to 9.24242e-01. The state variable trajectories for the global optimum parameters
are shown in Figure 4. The results are presented in Table 4. The upper bound
calculation was performed once every 100 iterations.

While using only the constant bounds, a large number of iterations is needed
for convergence to the relative optimality margin that has been set. When the α-
based underestimating scheme is additionally used, the first lower bound calculated
is equal to the upper bound, achieving the relative optimality reported. It can be
easily shown that the solution of the ODE system results in an affine function with
respect to the parameters for x1(1) and a convex function for x2(1). The use of
second-order information identifies this fact automatically. A significant advantage
of the general α-based underestimators proposed by Androulakis et al. (1995) is
that, when a function is automatically identified as convex through the analysis of
its second-order information, no convex relaxation is applied. This can improve
convergence dramatically as is the case here.

Dadebo and McAuley (1995) presented the analytical solution of problem (36)
which is given by a feedback control. For this analytical solution the objective func-
tion is again equal to 0.92424. The analytically calculated control and the linear one
are presented in Figure 5. Little difference between them can be observed.

Table 4. Case study 4: Global optimization results

Underestimation scheme Branching strategy εr Iter. CPU time (s)

Constant 1 1.00e-02 302 317

Constant 1 1.00e-03 1,062 1,106

Constant and α-based 1 or 2 1.12e-13 0 8
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Figure 5. Case study 5: The analytically calculated control (—) and the linear one (– –)
calculated using the global optimization algorithm.

6. Conclusions

Existing algorithms for the optimization of systems which are described by ODEs
can produce only local optimum solutions that can be used as an upper bound for
the global optimum. A new deterministic spatial BB algorithm has been developed
for the global optimization of such systems.

The sequential approach was used for the local solution of the dynamic optim-
ization problem. The ODE system was decoupled from the NLP formulation and
was integrated using well established techniques.

The global optimization of the resulting NLP problem requires the formula-
tion of its convex relaxation. Well known techniques have been used in order to
underestimate specific kinds of terms that may appear in the formulation of the
problem. The equality constraints have been overestimated using constant bounds
and convex α-based underestimators. A new approach has been developed for the
calculation of these constant bounds and the values of the α parameters. This
approach is based on the overestimation of the space of solutions of the para-
meter dependent ODE system that results when the original system is coupled
with the first and the second-order sensitivity equations. The concept of differential
inequalities has been used.

The structure of the algorithm has also been presented and analyzed. A proto-
type implementation was used to solve four case studies. When α-based underes-
timators are used additionally to the constant bounds there is an increase in the size
of the ODE systems that are integrated. This latter increase is due to the informa-
tion needed for the bounds on the second-order sensitivities. However, the results
suggest that the algorithm converges in far fewer iterations than in the case of using
the constant bounds alone, and usually requires less CPU time. Branching strategy
2, which quantifies the influence of the variables on the tightness of the underes-
timators, results in less iterations than branching strategy 1. To further investigate
these performance related issues current work is focusing on larger systems.
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Appendix

A. Theorems on continuity and differentiability of the solution of ODE
systems

An ODE system whose right-hand side depends on certain parameters is con-
sidered. Theorems on continuity and differentiability of the solution of this system
are presented taken from the book of Pontryagin (1962). The final remark makes
use of these theorems to present extended continuity and differentiability results.

The system that is considered is given by:

ẋ = f (t, x, p) (38)

where t ∈ �, x(t) and ẋ(t) ∈ �n, p ∈ �r and f : � × �n × �r → �n. It is
assumed that the right-hand side

f (t, x, p)

and its partial derivatives

∂f (t, x, p)

∂x

are defined and are continuous in some domain 0.

THEOREM A.1 (Pontryagin (1962)). If (t0, x0, p0) is an arbitrary point of the
domain 0, there exist positive numbers ρ1 and ρ2 such that for

|p − p0| < ρ1

the solution

x = ϕ(t, p)
of Eq. (38), which satisfies the initial condition

ϕ(t0, p) = x0,

is defined on the interval |t − t0| < ρ2 and is a continuous function of all the
variables t and p on which it depends.

THEOREM A.2 (Pontryagin (1962)). Let the partial derivatives

∂f (t, x, p)

∂p

of the right-hand side of system (38) exist and be continuous in the domain 0. Let
(t0, x0, p0) be some point of 0. Then there exist positive numbers ρ ′

1 and ρ ′
2 such
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that for |t − t0| < ρ ′
2, |p − p0| < ρ ′

1 the solution ϕ(t, p) of equation (38), which
satisfies the initial condition

ϕ(t0, p) = x0,

has continuous partial derivatives

∂ϕ(t, p)

∂p
.

COROLLARY A.1 (Pontryagin (1962)). If all the partial derivatives of the right-
hand side of system (38) with respect to the variables x and p up to the mth-order
inclusive exist and are continuous, then the function ϕ(t, p) forming the solution
of equation (38) and satisfying the initial condition ϕ(t0, p) = x0, also has con-
tinuous partial derivatives with respect to the parameters p up to the mth-order
inclusive.

REMARK A.1 (Adapted from Pontryagin (1962)) If the initial value is actually a
function of the parameters x0(p) then the solution of system (38) depends also on
the initial values and is written in the form:

x = ϕ(t, p, x0(p)) (39)

Let (t0, x0(p0), p0) be an arbitrary point of the domain 0. The following variable
transformation can be applied:

x = x0(p)+ y (40)

Then system (38) can be written:

ẏ = f (t, x0(p)+ y, p) (41)

Since the function f (t, x, p) of the variables t, x, p is defined in 0, the function

g(t, y, p, x0(p)) = f (t, x0(p)+ y, p) (42)

of the variables t, y, p, x0(p) is defined under the condition that the point (t, x0(p)+
y, p) belongs to 0. This condition distinguishes a certain domain 0∗ in the space
of variables t, y, p, x0(p), and in this domain the function g(t, y, p, x0(p)) is
continuous and has continuous partial derivatives with respect to y and x0(p). Let

y = ψ(t, p, x0(p))

be a solution of Eq. (41) which satisfies the initial condition

ψ(t0, p, x0(p)) = 0.
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Then using the variable transformation (40) and Eq. (39) the solution of (38) is
given by:

x = ϕ(t, p, x0(p)) = x0(p)+ ψ(t, p, x0(p)) (43)

which obviously satisfies the initial condition

ϕ(t0, p, x0(p)) = x0(p). (44)

By applying Theorem A.1 to Eq. (41) it can be deduced that solution (43) is con-
tinuous with respect to t and p if x0(p) is continuous with respect to p. By applying
Theorem A.2 it can also be deduced that solution (43) is continuously differentiable
with respect to p if x0(p) is continuously differentiable with respect to p. Finally,
by applying Corollary A.1 to Eq. (41) it can be shown that solution (43) has con-
tinuous partial derivatives with respect to the parameters, p, up to the mth-order if
x0(p) is mth-order continuously differentiable with respect to p.

B. Proof of Theorem 3.3

Proof. Using the inclusion isotonicity property of interval operations the following
are true ∀p ∈ [pL, pU ]:

x0(p) ∈ x0([pL, pU ])⇒
inf x0([pL, pU ]) � x0(p) � sup x0([pL, pU ]) (45)

If x(t), x(t) ∈ X satisfy the following inequalities:

x(0) � x0([pL, pU ]) � x(0)

then

x(0) � inf x0([pL, pU ]) � sup x0([pL, pU ]) � x(0)

and using inequality (45):

x(0) � x0(p) � x(0), ∀p ∈ [pL, pU ] (46)

The following are also true ∀p ∈ [pL, pU ], ∀t ∈ I0 and k = 1, 2, . . . , n:

fk(t, xk(t),Xk−(t), p) ∈ fk(t, xk(t),Xk−(t), [pL, pU ])
⇒ inf fk(t, xk(t),Xk−(t), [pL, pU ]) � fk(t, xk(t),Xk−(t), p) (47)

and

fk(t, xk(t),Xk−(t), p) ∈ fk(t, xk(t),Xk−(t), [pL, pU ])
⇒ sup fk(t, xk(t),Xk−(t), [pL, pU ]) � fk(t, xk(t),Xk−(t), p) (48)
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where Xk−(t) = [xk−(t), xk−(t)].
If x(t), x(t) ∈ X satisfy the following inequalities:

ẋk(t) � fk(t, xk(t), [xk−(t), xk−(t)], [pL, pU ])
ẋk(t) � fk(t, xk(t), [xk−(t), xk−(t)], [pL, pU ])

∀t ∈ I0 and k = 1, 2, . . . , n

then

ẋk(t) � inf fk(t, xk(t), [xk−(t), xk−(t)], [pL, pU ])
ẋk(t) � sup fk(t, xk(t), [xk−(t), xk−(t)], [pL, pU ])

∀t ∈ I0 and k = 1, 2, . . . , n

and using inequalities (47)–(48):

ẋk(t) � fk(t, xk(t), [xk−(t), xk−(t)], p)
ẋk(t) � fk(t, xk(t), [xk−(t), xk−(t)], p) (49)

∀p ∈ [pL, pU ], ∀t ∈ I0 and k = 1, 2, . . . , n

Based on Theorem 3.1 and inequalities (46) and (49) x(t) is a subfunction and
x(t) is a superfunction for the solution of ODE (11)–(12) ∀p ∈ [pL, pU ], i.e.,

x(t) � x(t, p) � x(t) , ∀p ∈ [pL, pU ] , ∀t ∈ I.

C. Lower bounding problem formulation for case study 1

The procedure followed in order to construct the lower bounding problem for the
first case study is presented. The formulation of the problem for the region R =
[vL, vU ] is given by:

min
v

−x(1)2 (50)

s.t. ẋ(t) = −x(t)2 + v ∀t ∈ [0, 1] (51)

x(0) = 9 (52)

vL � v � vU (53)

This problem is equivalent to:

min
x̂,v

−x̂2 (54)

s.t. x̂ = x1(1) (55)

vL � v � vU (56)
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where the value of x1(1) is obtained by solving ODE (51)–(52). When this ODE is
differentiated with respect to the parameter, v, the following first-order sensitivity
equations are produced:

ẋ2(t) = −2x1(t)x2(t)+ 1 , ∀t ∈ [0, 1] (57)

x2(0) = 0 (58)

where

x2(t) = ∂x1

∂v
(59)

and

ẋ2(t) = ∂

∂t

(
∂x1

∂v

)
(60)

The second-order sensitivity equations are produced when the system of first-order
sensitivity Eqs. (57)–(58) is differentiated once more with respect to the parameter,
v:

ẋ3(t) = −2x2(t)
2 − 2x1(t)x3(t) , ∀t ∈ [0, 1] (61)

x3(0) = 0 (62)

where

x3(t) = ∂x2

∂v
(63)

and

ẋ3(t) = ∂

∂t

(
∂x2

∂v

)
(64)

Based on Remark 3.1 the following ODE system can be constructed:

ẋ1(t) = inf(−x1(t)
2 + [vL, vU ])

ẋ2(t) = inf(−2[x1(t), x1(t)]x2(t)+ 1)
ẋ3(t) = inf(−2[x2(t), x2(t)]2 − 2[x1(t), x1(t)]x3(t))

ẋ1(t) = sup(−x1(t)
2 + [vL, vU ])

ẋ2(t) = sup(−2[x1(t), x1(t)]x2(t)+ 1)
ẋ3(t) = sup(−2[x2(t), x2(t)]2 − 2[x1(t), x1(t)]x3(t))

∀t ∈ [0, 1] (65)

x1(0) = 9
x2(0) = 0
x3(0) = 0
x1(0) = 9
x2(0) = 0
x3(0) = 0

(66)
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The solution of this system gives bounds for the set of solutions of the sys-
tem consisting of the original system (51)–(52), the first and the second-order
sensitivity Eqs. (57)–(58) and (61)–(62):

xi(t) � xi(t, v) � xi(t) , ∀v ∈ [vL, vU ] , ∀t ∈ [0, 1] , i = 1, 2, 3 (67)

Using Eqs. (59), (63), (67) and interval arithmetic properties the following are true:

∇2x1(1, v) ∈ [x3(1), x3(1)] , ∀v ∈ [vL, vU ] (68)

∇2(−x1)(1, v) ∈ [−x3(1),−x3(1)] , ∀v ∈ [vL, vU ] (69)

When the scaled Gerschgorin method (24) proposed by Adjiman et al. (1998b)
is applied on the interval Hessians defined by (68) and (69) the values for the
parameters α+ and α− can be calculated. Finally, the objective function is under-
estimated using the secant underestimator, the constant bounds on x̂ are defined by
equation (67) and the α-based parameter dependent overestimation of the equality
constraint (55) is constructed based on Eqs. (25)–(30). The convex relaxation of
the problem for the region R = [vL, vU ] is given by:

min
x̂,v

{−[x1(1)+ x1(1)]x̂ + x1(1)x1(1)} (70)

s.t. x1(1) � x̂ � x1(1) (71)

x1(1, v)+ α+(vL − v)(vU − v)− x̂ � 0 (72)

x̂ − x1(1, v)+ α−(vL − v)(vU − v) � 0 (73)

vL � v � vU (74)

where the value of x1(1, v) is obtained by solving ODE (51)–(52).
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